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Abstract

Imprecision in recall resulting in response heaping occurs, often by supplying a value central to a
range of values (i.e., by prototype use). For natural resources, heaping can be for days spent (e.g.,
hunting), animals/fish harvested/seen or amount spent. Frequency distributions having heaps can
cause significant bias in such measures as means or totals (e.g., of days of hunting or amount
harvested). Since bias can cause poor decisions, determining if bias is large enough to matter is
important. The paper provides the logic and flow of a deheaping procedure allowing
determination of bias in means and totals for prototype heaping. The SAS© program developed
and available on the web is for heaping at multiples of 5 and 7. Deheaping and its consequences
are illustrated. The article discusses variables being appropriate to be deheaped by the program,
why only multiples of 5 and 7 are covered, bias other than from prototype use and reasons for
using the program rather than alternatives.

Introduction

A number of papers in the human dimensions, wildlife and tourism literature involve analysis of
variables that have excessive frequencies occurring for some numbers such as on numbers
ending in zero or five. This paper is about deheaping when heaping results from using a value as
a proxy for a range of values when there is uncertainty about an exact response to use.
Huntenlocher, Hedges & Bradburn (1990) refers such responding as using prototypes. A
respondent who is not confident, for example that 23 is the number of days hunting moose in a
year may give the prototype response of 25. In this context a prototype used by many
respondents could be “if I’m not confident about a response but feel my response should be
between 23 and 27, I’ll respond 25.” A less confident respondent might “round” 23 to 20 and 26
to 30. The first respondent can be referred to as a 5-heaper and the second as a 10-heaper.
Deheaping refers to starting with frequency data such as f (x) in Figure 1, and arriving at a curve
such as d(x) in which responses in heaps have been allocated back to give the distribution heaped
responses likely came from.

A manager might want to use data on total person-days of hunting or amount of harvest in seting
season length and / or allowable harvest. If the manager or researcher see heaps at responses
such as 5, 10, 15, 20, etc. she/he may feel confident that the heaps are occurring because of using
a “rounded” response when uncertain about a value to give. Use of “rounding” could seem
obvious because no licenses or hunting limits would result in excesses of responses ending in
zero or five. Chance would not give preference to any particular number so peaks, other than
from random variation are not expected. Unfortunately, heaping can cause bias in estimates that
greatly exceeds estimated standard deviations in estimates such as means or totals (e.g., mean
days of hunting a species such as moose or in the mean or total harvest of ducks or fish).

Literature

Consideration of the implications of heaping in natural resources data has a history. Beaman,
Vaske and Grenier (1998) presents a deheaping methodology. Vaske and Beaman (2006) provide



a review of findings on response heaping by 2006. Here, only literature directly relevant to
deheaping is cited.

Huttenlocher, Hedges and Bradburn (1990) deal with respondents giving imprecise responses
using prototypes. One can think of a prototype as a triple, [L,V,U]. In the triple, here enclosed in
square brackets, L is the lower limit of a range, U is the upper bound of a range and V is the
prototype value given when a person feels uncertain about x with L≤x≤U. Because of uncertainty 
about a value, the person only feels comfortable giving V as a response. In other words, using a
prototype refers to a person using a particular response, say 20, when the person feels some
value, say between 18 and 22, is most likely the right answer to give but does not feel
comfortable giving a particular value. In their thinking V is not a precise value but a good
approximation. In this context, some respondents give precise responses and others give
imprecise, prototype, responses (e.g., respond using responses that are multiples of 5 or 10).

Beaman, et al. (1998) use assumptions in justifying a procedure for deheaping when heaping
results from the use of prototypes. General ideas behind their deheaping can be understood by
looking at Figure 1. The frequency function, f(x), has heaps. Below the heaps one can discern a
relatively smooth trend function, t (x), that traces the trend in frequency of non-heap responses.
Since the trend establishes where heaps start, an estimate of the number of responses in a heap at
x is h(x)=f(x)-t(x).

Deheaping involves arriving at a function, δ(x), showing the way that a frequency function 
would look if all respondents gave precise responses; that is did not use prototypes or other
response strategies such as multiples that result in heaps (Vaske, Beaman and Huan article re
multiples- reference not handy). Therefore knowing the size of heaps, one just needs to prorate
the number of responses in heaps appropriately to x-values they came from. The Beaman, Vaske
and Grenier (1998) assumption that prorating back should be roughly in proportion to the t(x)
values in the range of a prototype, allows prorating back. The idea is that for the prototype
[L,V,U], Equation 1 defines the proportion that goes to x. In words, the part of H[L,V,U] that goes
to x is in proportion to t(x) as a part of Σt(j) over the range of the prototype. This approach is 
consistent with the mathematical statistics concept used in addressing the consequence of
grouping, you could say heaping, responses that have a given distribution (e.g., see Yates 1934).

Equation 1: Pt(x, [L,V,U])=(ݔ)ݐ/(∑ )ݐ )݆
ୀ )

where t refers to the estimated trend below the heaps corrected for certain responses

The rationale behind the proration is easy to understand. The idea is that in the range of the
prototype [L,V,U], uncertain responders have a probability Π([L,V,U]) of responding by V. 
Beaman, Vaske and Grenier (1998) essentially describe having such a probability as making an
unbiased response. The response is unbiased in that the value of the precise responses that a
person would give does not influence using the prototype. In other words, the assumption is that
a person whose precise response should be L, U or any value between has the same probability
of “heaping” using the prototype. Accepting this assumption is a topic in the Discussion.

Respondents using prototypes and responding in an unbiased way does not mean that estimates
made using their responses are unbiased. Typical estimates made using data on days of hunting
or fishing or on harvest in these days are total person-days of activity (e.g., hunting moose), total



harvest (e.g., ducks harvested in a state) or means such as mean days of hunting or mean number
of ducks harvested per hunter. Using [L,V,U] in a range where frequency is decreasing results in
more low responders (toward L) heaping than high responders (toward U) being in a heap so
treating total days or harvest for N respondents as NV is an overestimate. Respondents in being
unbiased create a bias that analysis must remove based on the aggregate pattern in f(x).

Bias resulting from using prototypes is a separate matter from bias resulting from some other
recall matters. Recalling the value of a variable can be subject to biases such as telescoping,
bounding or forgetting, or other factors. For some respondents, the cognitive process of
answering questions about their behavior involves the simple retrieval of information from
memory, for example using episode enumeration (Sudman, Bradburn, & Schwarz, 1996; Nadeau
& Niemi, 1995). Response errors occur from episode omission and/or misplacing episodes in
time (telescoping). Episodic enumeration can give way to, for example, respondents using
estimation heuristics (Tversky & Kahneman, 1974). Automatic estimation (Hasher & Zacks,
1984; Nadeau & Niemi, 1995) involves a sense of relative or absolute frequency (e.g., I go
hunting once most weekends in the season). This is similar to formula based estimation such as
using a multiplier (Vaske, Huan and Beaman ). Responses are not necessarily correct. However,
what matters for use of a prototype is whether a person is prepared to give a precise response or,
because of uncertainty, gives an imprecise/approximate answer based on a prototype.

Deheaping Logic

Consider that values of a variable x are collected for a sample. For each prototype used, consider
that a probability Π([L,V,U]) exists giving the proportion of respondents at any x for L≤x≤U 
expected to heap using [L,V,U]. Given that δ(x) is the function that would occur if all 
respondents replied without using prototypes, the expected number in a heap from using the
prototype is the number to be returned. Equation 2 shows the number in the heap. Because the
total number is proportional to δ(x) at each x, the proportion to return to x is defined by Equation 
3. Numbers of responses to return from the heaps to where they came from is therefore expressed
by Equations 4.

Equation 2: N([F,V,U])= Π([L, V, U]) (∑ ߜ
ୀ ( )݆)

Equation 3: Pδ(x, [F,V,U]) =
ఋ(௫)

∑ ఋೆ
ೕసಽ ()

Equation 4:R(x, [L,V,U])= Pδ(x, [F,V,U]) N([F,V,U])

A challenge is returning numbers of respondents in heaps to x values without knowing δ(x). As 
long as there is a trend observable below the heaps, say t(x), the trend can be estimated by
regression. Given that one does not know the functional form of t(x), assuming a form presents
the risk of poor fit. Because the goal is not determining a functional form, an alternative to
assuming a functional form is to use multiple overlapping regressions across the range of x.
Rather than make a linear approximation over a range where there is curvature, approximating
the curve in a limited range by a quadratic is an option. Using a quadratic rather than going to a
cubic is reasonable given that in the range covered first and second derivatives of the function
reflect most of the change taking place.



Multiple overlapping regressions can be run, for example, using SAS©``s PROC REG
(SAS\STAT 1989). With f(x) set to missing for x-values that are heaps PROC REG will return
estimated values for the trend at heaps as well as estimated y-values for other x-values. As
indicated in Equation 5, the estimated trend, ᵵ(x), can be defined as the weighted average of 
estimates that occur for each x value. Given, for example, that every regression is run with at
least six non missing f(x) defining the trend (more than 6 only to avoid leaving out f(x) values
near the maximum of x), it is reasonable to have weighting for estimates that are lower for first
and last points in the range of the regression so big swings that can occur at the ends of ranges
would not unduly influence trend values. An alternative that may be pursued in modifications to
the program is to use estimated variance in y-values produced by the regression program. That
was not pursued since these values can be highly variable with three parameters being estimated
based on 6 observations (i.e., these variance estimates can be very inaccurate).

Equation 5: ᵵ(x)=the weighted average of regression estimates that occur for each x 

When ᵵ(x) is estimated, heap height, say h(xh) is estimated by the difference between f(x) and
ᵵ(x) as specified in Equation 6. In other words, the height of a heap is the difference between the 
function value at the heap and the value of the trend through the f(x) for non-heap values.

Equation 6: h(xh)=f(xh)- ᵵ(xh) where xh is a heap

Given one does not know δ(x), using an approximation to it in applying Equations 2 to 4 is 
reasonable. As one sees from Equation 3, it is the shape of δ(x) that matters in computing 
proportions. A function roughly proportional to δ(x) will yield proportions similar to those 
calculated using δ(x). The function that is available and should be similar in shape to δ(x) is ᵵ(x). 
However, if using ᵵ(x) gives an approximation to δ(x), say d0(x), then it is reasonable to use d0(x)
to get a better approximation of δ(x). Given that approximation, say d1(x), why not make another
approximation using d1(x)? In fact, one can think of going on to d2(x), d3(x), etc. until further
iteration makes so little difference that more iteration is pointless. Equation 7 and 8 express using
estimates from an iteration, n, in obtaining dn+1(x).

Equation 7: Pd,n(x, [F,V,U])= ݀(ݔ)/(∑ ݀

ୀ ( )݆)

Equation 8: Rd,n+1(x, [L,V,U])= Pd,n(x, [F,V,U]) η([F,V,U])  
where

                              and η([F,V,U]) is the observed number in the heap related to [F,V,U] 

A remaining matter regarding deheaping is dealing with prototypes that share heaps, heap to the
same location. A prototype is designated as H[L,V,U].This is because, for example, for 0-5
heaping, the 5-width prototype [8,10,12] and the 11-width prototype [5,10,15] can both be used
resulting in heaping on 10. In other words the size of the heap at 10 is H[8,10,12] plus H[5,10,15].
Given some people may “round” to multiples of 5 near 20, 30 and even larger multiples of 10,
shared heaping can occur at these values. In this research, only 5-heapers and 10-heapers sharing
a heap is considered though heaping on multiples of 7 is allowed. Discussion pursues the matter
of why prototypes such as [7,14,21] are not considered.



For multiples of 10, let h10 be a multiple of 10 and h(h10) be the estimated number of responses
in the heap (i.e., h(h10)=f(h10)- ᵵ(h10). For deheaping, a ratio, ρ5 (h10), is needed that gives the
proportion of h(h10) by 5-heapers. Since one does not know (h10), it must be estimated. For
example, for 10 one has 5-heaps at 5 and 15 to use in approximating the proportion that 5-
heapers are in the heap at 10. For the moose hunting data of Figure 2, computation of ρ5(h10)
must take into account that 7-related heaps occur at 7 and 14. Computations given in Appendix 2
result in ρ5(10) =0.6 and ρ5(20)=0.3. Unless someone can arrive at an exact computation method,
a deheaping program must be provided with computed values of ρ5(h10).

Finally, consider two prototypes such as [5,10,15] and [15,20,25]. Prototypes centered on even
numbers overlap at boundaries of 15, 25, etc. and have a boundary a 5. You could say they are
fuzzy at their boundaries. One can think of a person being relatively certain that the appropriate
exact response, x, was between 10 and 20 but being more comfortable responding 10 or 20 than
15, the person is a 10-heaper. A logically consistent way of dealing with overlapping prototype
boundaries is giving the boundary points a weight of half in distributing the number of responses
in heaps back to x-values. This just acknowledges that the odds are 50/50 of heaping high or low
(e.g., up to 20 or down to 10) for values other than 5. If a weight of a half is appropriate for other
boundaries where responses are 5 from the heaping value, a weight of a half seems more
reasonable for 5 than a weight of one. There simply is no research on this matter and assigning a
weight of 0.5 or 1.0 makes little difference in estimation.

Implementation of Deheaping

A first consideration in deheaping a function is identifying its heaps. Figures 1 is useful in
understanding why identifying heaps is done by the researcher. If you do not see heaps,
deheaping is not necessary because nothing is there to influence estimates. However, if heaps are
apparent, then use of a deheaping program for heaping caused by prototype use may be
appropriate. Use of “may” is because a frequency function having heaps does not mean that
heaping is resulting from the use of prototypes. Selling licences for say 4 days and for eight days
can cause heaps at 4 and 8 because some purchasers will report using all days. Such heaping
reflects administrative procedures thus prototype deheaping is inappropriate because responses
reflect what was done. Therefore, a first step in deciding to apply prototype deheaping is
identifying heaps that occur because of prototype use.

Deheaping being modeled is only for prototype use. Therefore, for now consider a f(x) with only
prototype use heaps occuring. In Figure 1, heaps are seen at 5, 7, 10, 14, 15, 20, 25.and possibly
at 21. Consider the high frequency at 30 is because 30 is either for 30 or more or is a limit on x
(e.g., only 30 days of hunting a given species is allowed in a year). If it is a heap because 30 days
or a total harvest of 30 is all that is allowed, it has a different implication for estimates of totals
or means (e.g., mean days of hunting or total person days of hunting) than if large responses are
pooled. This matter is pursued in the Discussion. Deheaping for the f(x) of Figure 1 is for
responses less than 28. Dealing with heap at 28 with [25,28,31] would involve dealing with
responses at 30. Dealing with 30 is not possible whether it is an upper limit or there is pooling
since the authors have no way of estimating h(30).

Given a function has only prototype heaps except at a maximum value, material presented shows
how to deheap. As specified in Equation 6, when heaps are identified and a trend below them



exists and is estimated by regression, their location can be used in estimating the number of
responses in heaps. The trend below the heaps provides a basis for starting to prorate the
amounts in heaps to the x-values of prototypes that result in the heaps. Equations 7 and 8
algebraically define iteratively prorating responses in heaps back to where they came from based
on the trend and then based on successive approximations to the deheaped function Therefore, as
identified in Figure 2, programming the steps specified is how the deheaping program was
implemented.

Using the Deheaping Program Implemented and Standard Deviations in Estimates

The deheaping program that is available operates as described above. It is available on the web
(see Appendix 1) with documentation and examples. One is instructed on providing correct
information to the program and running it in SAS© (? Reference). There are data and other
material that allows one to confirm that the program is working. Though various adjustments can
be made by changing program parameters, a user can proceed by providing information on
where heaps are located and may modify information on the proportion of responses in heaps
that are at multiples of 10 are 10-heapers.

As indicated above, Figure 2 gives general information on the flow of the deheaping program.
The material above has focused on determining an estimate of what responses would be if there
was no heaping. However, collection of data on days of hunting or harvest allows computing
single numbers that are useful for managers and planners. If you know the total number of days,
T, that N people spent hunting , say moose, mean days per person is u=T/N. Actually, if you are
a resource manager, you may be interested in u and in T. Knowing u does not tell you the “load”
being put on a resource. Knowing total numbers using a resource, N, does not give you a good
measure of load. Knowing N and u over time can give you a perspective on how use is changing.
The purpose of deheaping is to determine if data with heaping produces the same results as
deheaped data. So, from the program one has non deheaped results (say un and Tn, Equation 3)
and deheaped results (say ud and Td, Equation 4). How xf(x) should be dealt with for a pooled
responses is addressed in the Discussion. Since N is not a value that should be determined by a
deheaping program, it does not appear with subscripts but rather if the “N” implied by deheaping
differs from N, the program makes a correction. In the context provided, a measure of the effect
of heaping can be referred to a s bias and computed as in Equation 5. From Equation 5 you see
that bias in the mean and total is the same in percent terms.

Equation 9: Tn =∑ ݔ݂ (ݔ) over responses, over values of the frequency function

Equation 10: Td (ݔ)ᵭݔ∑= over values of nth iteration estimate of the deheaped function

Equation 11: Bias Percent=100(Tn-Td)/Td

=100(Tn/N-TdN)/Td/N

=100(un-ud)/ud

Figure 4 about here

Figure 5:Example Results



Given information supplied to the program is correct, the program produces results like:

Bias percent is 2.8% with the estimated % of respondents heapers= 25.8%
and with observed total dayshunt=144243 while deheaped total dayshunt=140150 .
NOTE: Deheaped total dayshunt corrected for # of respondents deheaped #= 140275

Adjustment is because 19371 respondent are in the data.
This is a % difference of .09%=100*17/19371%.
Deheaping involves regression estimates giving deheaped # of respondents as 19354 .
Observed mean dayshunt is 7.45 while the deheaped mean is 7.25.
NOTE: Positive bias shows observed is too large by the % given.
NOTE: Bias is corrected for for observed number of responses NE to deheaped number.

-------------------------------------------------------
Based on 20 randomization steps,
the mean bias for the frequency function is 2.66 with standard deviation of 0.076
--------------------------------------------------------

The variety of information in Figure 3 is given to satisfy needs of both managers and
researchers. A manager may just want to know that bias is 2.8% and know corrected and
uncorrected estimates of means or totals (e.g., of mean days hunting moose and total person days
hunting moose). This may be low enough that concern only arises when a change in data
collection method results in a change in bias. A small change in bias can matter as one can get
the false impression of mean or total days hunting starting to change at a rapid rate. Knowing
that about 25% of responses is in heaps can be of value to a researcher who wishes to compare
the amount of heaping that occurs with different survey methods (e.g., with a study such as
Beaman., Vaske and Miller 2005b). Knowing that deheaping results in a slightly different total
number of respondents may also interest a researcher. The difference in total results from the
trend established by regression not having the same total as the observed responses that are not
for heaps. Knowing that the totals are within a certain percent is evidence that the trend fit was
good or poor.

An important matter if one is using estimates is having standard deviation of the estimates. The
estimation program provides a vehicle for deriving standard deviations. The standard deviations
in bias and some other estimates are computed using randomization (obtain program
documentation as instructed in the Appendix). By introducing the random variation that is
occurring in observed values into values of the f(x) for which estimates are made, one finds out
how much random variation can be influencing estimated values. Any f(x) being deheaped that is
based on N observations has p(x)=f(x)/Σf(x) for  the estimated probability of a response x. Given 
p(x) is relatively small, the number of responses of x to expect in N trials is approximately
Poisson distributed. By taking f(x) to be an estimate of μ, one also has an estimate of σ2 since for
the Poisson, μ= σ2. By creating multiple random “influenced” versions of f(x) and making
estimates for these, one gets estimates of means and totals that would occur given variation likely
occurring in multiple versions of f(x). Standard deviations in estimates can be computed from
the, say 20, alternative values of estimates produced by runs on 20 “randomizations”.

If one has an estimated of bias of 2% and its standard deviation is 4%, there is not much point in
doing anything with the estimate. Estimates from f(x) are as good as you are going to get.
However, above you that for an estimate of 2.55% the standard deviation is about .1. You have



evidence that using f(x) produces estimates that are high. However, above it was made clear that
a function c(x) and proportions of 5 to 10 heapers have been used in estimation. These
“parameters” of the estimation are not exact. Varying these can influence estimates. The
influence of such change is discussed below under the heading Sensitivity.

Discussion

This paper builds on Beaman, Vaske and Grenier (1998). By using regression to determine a
trend showing where heaps begin, the paper makes more systematic use of information than the
earlier approach. Another advance over the earlier work is recognizing that the trend function
that is used in determining the height of heaps is only a first approximation to the shape of the
deheaped function that that should be used in distributing response in heaps appropriately. In
other words, the need to iteratively move from the trend function to successive approximations
of the deheaped function is a contribution. Also, recognizing the need to estimate the relative
numbers of 5 and 10-heapers at heaps that are a multiple of 10 is impotant. Addressing the
tendency to avoid certain responses (i.e., re 9, 11 and 13 in Figure 2) and allowing for this is
another contribution. Finally, producing standard deviations in estimates by recognizing that
having standard deviations in estimates can be achieve by randomization and repeated estimation
is a contribution.

One may wonder why this article is relevant when one has mathematically sophisticated
deheaping procedures available. Camarda, Eilers and Gampe (2008) is an example of
sophisticated modelling of general patterns of digit preference. The difference between the
mathematical approach and this paper is pursuing smoothing based how people arrive at
responses. A mathematical distribution of heaps need not, and thus may not, reflect how people
behave. Given mathematical deheaping need not reflect behavior, logic suggests using the
deheaping approach presented here and addressing behavorial issues on which research is still
needed.

Because this paper is about implementing deheaping when heaps result from prototype use,
success is shown by results provided in Table 5. Given that a frequency function to be deheaped
only has heaps at multiples of 5 or 7, the program produced and freely available (see Appendix
1), achieves deheaping and estimates as described. Therefore, the limitations and needs for
enhancement of the deheaping program are pursued under the heading “The Need for Further
Research and Program Enhancement.”

The Need for Further Research and Program Enhancement

A matter for further research is developing a program that does not depend on a trend, t(x), as a
critical step in estimating the distribution of responses that would occur if there were no heaping.
When one has heaps with few non heaped responses, the program developed is not appropriate
since estimation depends on developing a trend function base on most y-values being greater
than zero. The program is not useful for much expenditure data since, in the authors’ experience
expenditure data tends to be a collection of heaps. Also, the program is for deheaping when
respondents have equal probability of replacing any responses in an interval by a central value.
This has been referred to as unbiased responding and has been taken to be an attribute of
prototypes being used. For wildlife or other data in which people respond even with 50, it may



be clear that a person is more likely to round down from, say 60, than to round up from 40. This
is not unbiased use of a prototype and the program is not appropriate.

Mention of larger responses relates to a limitation on the deheaping procedure relating to the
largest response (i.e., maximum x-value) being a pooled response such as “30 or more”. If 232
respondents reply 30 because 30 days was the maximum days or harvest allowed, then 232*30 is
the number of person days to use in determining total person-days and mean days per person.
However, if 30 refers to “30 or more” then 232*30 is an underestimate, given most actual values
if reported would be greater than 30. As one sees in Figure , program output provides
information on how a number like 233*30 (i.e., max(x-value)*number giving that response)
relates to total person-days.

The matter of estimates made being sensitive to functions used in estimation and prototype use
being unbiased has been mentioned. A program enhancement that is being pursued is solving for
best values of ρ5(h10). By altering values and assessing “goodness” of deheaping, the theory is
that best values of ρ5(h10) can be determined. This research presents challenges since defining
goodness of fit cannot be how an estimate curve relates to observations since the goal is
producing a function from heaped data that has no heaps. As for a prototype [L,V,U] being such
that V=(L+H)/2, this may not be a good assumption as responses become large (e.g., 50 or
greater). More needs to be known about prototypes used in giving large responses.

While this research makes advances over Beaman, Vaske and Grenier (1998) research on may
matters will allow improvements. In particular, formation on 5 and 10-heapers sharing responses
in heaps at multiples of 10 is particularly weak. Therefore, research such as using computer
assisted data collection in asking about the way responses at heap-values are arrived at is
important. Such computer assisted research can throw light on preference for responses that do
not end in 1, 3, 7 and 9, with exceptions like the disposition to 7 when thinking in weeks. In fact,
in a project where a computer introduces questions based on x-values, one could press
respondents on the “best” value they can arrive at for responses of 40 or larger and thus provide
new insights into prototype use. Given that responses of 1 or 2 are probably considered accurate
by respondents and modelling all of a sudden has uncertainty associated with three or greater,
probing on certainty about small responses could also be fruitful.

Mathematical (not behavior based) deheaping programs are an alternative to the program
reported on here. Camarda, Eilers and Gampe (2008) have provided R-code so what their
program produces can be compared with the deheaping program of this research. This
comparison is being pursued to understand why differences in estimates occur. One avenue is
modifying R code so mathematical and behavior based estimates tend to agree. Given “R” is
free, having a simple approach to estimation using the “R” statistical package that gives about
the same results as using SAS@ would be advantageous for those who do not have access to
SAS@.

Conclusion

As stated above, this research improves on earlier work by introducing important considerations
not pursued in the past deheaping research. However, the computer program implementing
concepts into estimation only allows for deheaping to occur when heaps are due to prototype use
and are at multiples of 5 and 7. Even then dealing with heap sharing (e.g., 5 and 10 heapers both



heaping to multiples of 10) requires program users to specify proportions such as the percent of
responses in the heap at 10 that come from 5-heapers). In that regard, a better understanding of
prototype use, particularly shared heaping, is needed. Understanding of concepts is key to
improved quantitative application of the concepts. Still, the program developed and made
available on the web is adequate for addressing the effect of heaping on means and totals of data
on such matters as days spent (e.g., days hunting or fishing) or harvest (e.g., ducks shot or fish
caught). Not only providing an estimate of bias but an estimate of the standard deviation in that
bias makes it possible to recognize if a bias estimate is statistically meaningful. In other words,
the work advances research and management use of information.
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Figure 1:



Figure 2: Program steps associated with getting the program running

1. Provide information for the program to access and store data

2. Read a frequency function and store values needed for deheaping

3. Process heap location information and store for use in deheaping

4. Examine the data to create code for regressions for estimating a smooth curve showing
where heaps start and run the regressions.

5. Using regression results get heap heights.

6. Remove an estimate of responses made with certainty from the “trend below the heaps”
to get a “trend in uncertain responses”.

7. Distribute heaps using the “trend in uncertain responses” and smooth the distributed
results for adding them back to the “trend below the heaps” (the total count at heaps at
particular “x” values is broken up and distributed based on proportions derived from the
“trend in uncertain responses”).

8. Proceed with 5 iterations in which estimates of the deheaped function are improved by
using a the previous estimate of the deheaped function, with the estimate of certain
responses removed) to get proportions to distribute the total count at heaps more
appropriately.

9. Output the estimated deheaped frequency function and bias related statistics such as the
means and totals (e.g., mean days hunting and total person days hunting) computed from
observations and the deheaped frequency function. Also, compute differences in these as
a percent (i.e., estimate bias). See Figure 4 for actual results.

10. Introduce appropriate (Poisson) random variation into the observed frequency function
and make estimates for these “randomizations” (e.g., 20 times) to get standard deviations
in estimates (e.g., in bias in average days hunting or total person days of hunting and
output the results—see Figure 4).


